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Analyzing Random Permutations for Cyclic Coordinate Descent

STEPHEN J. WRIGHT AND CHING-PEI LEE

Abstract. We consider coordinate descent methods for minimization of con-

vex quadratic functions, in which exact line searches are performed at each

iteration. (This algorithm is identical to Gauss-Seidel on the equivalent sym-
metric positive definite linear system.) We describe a class of convex quadratic

functions for which the random-permutations version of cyclic coordinate de-

scent (RPCD) is observed to outperform the standard cyclic coordinate descent
(CCD) approach on computational tests, yielding convergence behavior simi-

lar to the fully-random variant (RCD). A convergence analysis is developed to

explain the empirical observations.

Coordinate descent, Gauss-Seidel, randomization, permutations

1. Introduction

The coordinate descent (CD) approach for solving the problem

(1.1) min f(x), where f : Rn → R is smooth and convex,

follows the framework of Algorithm 1. We denote

(1.2) ∇if(x) = [∇f(x)]i, ei = (0, . . . , 0, 1, 0, . . . , 0)T ,

where the single nonzero in ei appears in position i. Epochs (indicated by the
counter `) encompass cycles of inner iterations (indicated by j). At each iteration
k, one component of x is selected for updating; a steplength parameter αk is applied
to the negative gradient of f with respect to this component.
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Algorithm 1 Coordinate Descent

Set Choose x0 ∈ Rn;
for ` = 0, 1, 2, . . . do

for j = 0, 1, 2, . . . , n− 1 do
Define k = `n+ j;
Choose index i = i(`, j) ∈ {1, 2, . . . , n};
Choose αk > 0;
xk+1 ← xk − αk∇if(xk)ei;

end for
end for

The choice of coordinate i = i(`, j) to be updated at inner iteration j of epoch
` differs between variants of CD, as follows:

• For “cyclic CD” (CCD), we choose i(`, j) = j + 1.
• For “fully randomized CD,” also known as “stochastic CD,” and abbrevi-

ated as RCD, we choose i(`, j) uniformly at random from {1, 2, . . . , n} and
independently at each iteration.
• For “random-permutations CD” (abbreviated as RPCD), we choose π`+1

at the start of epoch ` to be a random permutation of the index set
{1, 2, . . . , n} (chosen uniformly at random from the space of random per-
mutations), then set i(`, j) to be the (j + 1)th entry in π`+1, for j =
0, 1, 2, . . . , n− 1.

Note that xln denotes the value of x after l epochs.
We consider in this paper problems in which f is a strictly convex quadratic,

that is

(1.3) f(x) =
1

2
xTAx,

with A symmetric positive definite. Even this restricted class of functions reveals
significant diversity in convergence behavior between the three variants of CD de-
scribed above. The minimizer of (1.3) is obviously x∗ = 0. Although (1.3) does
not contain a linear term, it is straightforward to extend our results to the case for
problems of the form

f(x) =
1

2
xTAx− bTx

by replacing x0 in several places of our analysis with x0 − x∗, where x∗ = A−1b is
the minimizer of this problem. We assume that the choice of αk in Algorithm 1
is the exact minimizer of f along the chosen coordinate direction. The resulting
approach is thus equivalent to the Gauss-Seidel method applied to the linear system
Ax = 0. The variants CCD, RCD, RPCD can be interpreted as different cyclic /
randomized variants of Gauss-Seidel for this system.

In the RPCD variant, we can express a single epoch as follows. Letting P be
the permutation matrix corresponding to the permutation π on this epoch, we split
the symmetrically permuted Hessian into strictly triangular and diagonal parts as
follows:

(1.4) PTAP = LP + ∆P + LTP ,

where LP is strictly lower triangular and ∆P is diagonal. We then define

(1.5) CP := −(LP + ∆P )−1LTP ,
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so that the epoch indexed by l − 1 can be written as follows:

(1.6) xln = (PlCPl
PTl )x(l−1)n,

where Pl denotes the matrix corresponding to permutation πl. By recursing to the
initial point x0, we obtain after ` epochs that

(1.7) x`n = (P`CP`
PT` )(P`−1CP`−1

PT`−1) . . . (P1CP1
PT1 )x0,

yielding a function value of
(1.8)

f(x`n) =
1

2
(x0)T

(
(P1C

T
P1
PT1 ) . . . (P`C

T
P`
PT` )A(P`CP`

PT` ) . . . (P1CP1
PT1 )

)
x0.

We analyze convergence in terms of the expected value of f after ` epochs for any
given x0, with the expectation taken over the permutations P1, P2, . . . , P`, that is,

(1.9) EP1,P2,...,P`
f(x`n).

1.1. Previous Work. Convergence of RCD is analyzed in [5], showing that when
the objective is strongly convex, the method requires O((nLmax/µ)| log ε̂|) iterations
to reach an objective function value that is within ε̂ of the optimal value, in expec-
tation, when the coordinates are sampled in a uniform random manner, where µ is
the modulus of strong convexity and Lmax is the maximum coordinate-wise Lips-
chitz constant for the gradient. This rate can be improved to O((nLavg/µ)| log ε̂|)
if the sampling probability for each coordinate is proportional to the coordinate-
wise Lipschitz constants, where Lavg is the average of these constants. On the
other hand, the best known convergence rate of CCD for convex quadratic prob-
lems, given by [10], has an iteration complexity for reaching an ε̂-accurate solution
deterministically that can be O(n2) times slower than that for RCD in the worst
case. The best worst-case convergence guarantees for RPCD so far are still iden-
tical to those for CCD. (The analyses for CCD assume only that each coordinate
is processed exactly once per epoch, and are indifferent to the fact that the order-
ing of coordinates can change on each epoch, as in RPCD.) However, in practice
it is sometimes observed that RPCD behaves in a manner more similar to RCD
than CCD (see, for example, the experiments in [7] and the talks [11, 12]), and a
rigorous explanation for the general convergence rate for the expected objective of
RPCD over the random permutations has been difficult to obtain. Some trials have
been conducted to tackle this problem. Recht and Ré [6] state a conjecture whose
consequence is that RPCD converges faster than RCD on quadratic problems, but
they prove the result only for some special random cases. Sun et al. [9] have an-
alyzed the convergence speed of the distance between the expected iterate E[xk]
and the minimizer x∗ for convex quadratic problems, but this cannot be translated
to a result for the expected squared error E‖xk − x∗‖2 nor the expected function
suboptimality E(f(xk)− f(x∗)), which are much more informative quantities.1

Computational experience reported in [11, 12] showed that for most convex qua-
dratic functions (1.3), the convergence behaviors of all variants of CD are similar.
For example, when A is a matrix of the form V ΣV T where V is random orthogonal
and Σ is a positive diagonal matrix whose diagonals (the eigenvalues of A) follow

1As an example of why a sequence {xk} for which E[xk] = x∗ does not give useful information

about convergence rate, consider xk = x∗ + rk, where rk are drawn i.i.d. from N(0, I). Such
a sequence has E[xk] = x∗, yet it has E‖xk − x∗‖2 = 1, so cannot be said to converge to x∗ in

expectation.
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a log-uniform distribution, then CCD, RCD, and RPCD all converge at roughly
the same rates, no matter how widely the eigenvalues are dispersed. However,
these computational tests revealed a class of matrices A for which the variants had
radically different performance: matrices of the form

(1.10) A = δV ΣV T + (1− δ)11T ,

for small positive values of δ, and 1 = (1, 1, . . . , 1)T . For such matrices, the perfor-
mance of RCD and RPCD is similar, but CCD converges much more slowly. In this
paper, we explain much of this anomalous behavior by considering a matrix closely
related to (1.10), and explaining the difference by means of a specialized analysis
of RPCD.

The current paper is an extension of our paper [3] in which, motivated by the
empirical observation above, we considered the special case of (1.10) in which Σ = I,
that is,

(1.11) A := δI + (1− δ)11T , where δ ∈ (0, n/(n− 1)).

It was proved by [10] that this matrix achieves worst-case convergence behavior
for CCD. We showed in [3] that a factor of O(n2) fewer iterations are required by
RPCD to achieve the same accuracy, and that the complexity of RPCD is similar
to RCD in this case. Salient properties of the matrix (1.11) include the following.

(a) It has eigenvalue δ replicated (n−1) times, and a single dominant eigenvalue
δ + (1− δ)n, and

(b) it is invariant under symmetric permutations, that is, PTAP = A for all
permutation matrices P .

The latter property makes the analysis of RPCD much more straightforward than
for more general A of the form (1.10). Specifically, it follows from (1.5) that CP ≡
C = −(L+ ∆)−1LT , where A = L+ ∆ + LT , that is, CP is independent of P . For
the matrix (1.11), the expression (1.6) thus simplifies to

xln = (PlCP
T
l )x(l−1)n, l = 1, 2, 3, . . . .

We refer to [3] for a more extensive discussion of prior related work on variants
of coordinate descent. We note in particular that for general convex functions f ,
CCD has weaker convergence guarantees than for convex quadratic f , as analyzed
in [1, 8, 4]. By contrast, the convergence results for RCD presented in [5] show no
difference between quadratic and nonquadratic convex functions.

1.2. Contributions. In this work, we study the behavior of the RPCD variant of
CD on problems of the form (1.3), where the coefficient matrix has the form

(1.12) Bu := δI + (1− δ)uuT ,
for some u ∈ Rn. This paper focuses on the case in which the components of u
are not too different in magnitude, and are all close to 1. Rather than working
directly with (1.12), we work with a diagonally scaled version that has a form more
tractable for analysis. By scaling (1.12) symmetrically with the matrix U = diag(u),
we obtain

Aε := δI + (1− δ)11T + εD,

where δ ∈ (0, n/(n− 1)), ε ≥ 0,(1.13)

D = diag(d), with mini di = 0 and maxi di = 1.
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(Details are given in Section 2.) Note that both forms (1.12) and (1.13) are gener-
alizations of (1.11). They are both closely related to the more general form (1.10),
in that (1.12) can be obtained from (1.10) by a symmetric scaling with Σ−1/2V ,
while (1.13) has the form (1.10) with V = I and Σ = I + (ε/δ)D. Thus, this paper
provides a significantly more complete explanation of the anomalous convergence
behavior involving matrices (1.10) than our earlier work.

For matrices of the form (1.13) in (1.3), this paper proves similar convergence
behavior for RPCD to what was proved in [3] for the special case (1.11), in the
regime defined by the following values of the parameters n, ε, and δ:

(1.14) 0 < δ ≤ ε, |ρ1| ε2 < δ � 1, nε ≤ 1.

where ρ1 is a positive or negative quantity of modest size, magnitude not much
larger than 1, and independent of n, ε, and δ. We prove that the convergence rate
guarantee of RPCD for problems defined by (1.13) is similar to that of RCD, and
much better than the rate bound for CCD. Specifically, we explain via analysis
of a linear recurrence that captures the epoch-wise behavior of RPCD that the
per-epoch objective improvement is bounded by a factor of approximately

(1.15) 1− 1.4δ,

which is similar to the corresponding factors of approximately 1 − δ and 1 − 2δ
that are known for RCD (by different analyses), and significantly better than the
factor of approximately (1 − δ/n2) arising from worst-case theoretical guarantees
for CCD. By the generalization of (1.11) to (1.13) (and thus (1.12)), we extend our
understanding of the empirical behavior of RPCD, RCD, and CCD described at
the beginning of Section 1.1.

1.3. Remainder of the Paper. In Section 2, we relate matrices of the forms (1.13)
and (1.12), showing that the behavior of CD is similar on both. Section 3 presents
our analysis for the behavior of RPCD on problem (1.3), (1.13). In particular,

we define a sequence of matrices {Ā(t)
ε } such that given any initial guess x0, the

expected value of the objective f(xtn) after the tth epoch is 1
2 (x0)T Ā

(t)
ε x0. We

then define a sequence of matrices {Â(t)
ε } that dominates {Ā(t)

ε }, and that can be

parametrized compactly. We analyze convergence of the sequence {Â(t)
ε } by means

of a spectral analysis of the matrix that relates its parameters at successive values
of t, and use it to develop an estimate of the asymptotic per-epoch improvement
of the objective f(xtn), t = 0, 1, 2, . . . . We provide an explanation in Section 3.5
for the large decrease in f that is often observed in the very first iteration of
CD, a phenomenon that is not explained by the asymptotic analysis. Section 4
discusses RCD and CCD variants for the problem (1.3), (1.13), while Section 5
reports computational experience with the three variants.

1.4. Notation. In addition to the notation ρ1 mentioned above, which denotes a
scalar quantity of size not much greater than 1 and independent of n, ε, and δ, we
make extensive use of vector quantities r1 ∈ Rn and matrix quantities R1 ∈ Rn×n
(symmetric in some contexts and nonsymmetric in others), which we assume are
both bounded in norm by 1, that is,

(1.16) ‖r1‖ ≤ 1, ‖R1‖ ≤ 1.
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In the case in which R1 is also symmetric, it follows from these assumptions that
−I � R1 � I. This notation is essential to capturing remainder terms that appear
in our analysis. In particular, it allows us to keep explicit track of dependence of
the remainder terms on n, ε, and δ. For example, a vector quantity whose size
is bounded by a modest multiple of ε2n−1 can be represented by ρ1ε

2n−1r1. The
following estimate follows immediately from this notation:

(1.17) R1v1
T = ρ1r11T provided ‖v‖ ≤ ρ1.

Matrix and vector norms ‖·‖ signify ‖·‖2 throughout, unless some other subscript
is specified.

2. Quadratic functions with Hessians of the form (1.13)

We discuss here the matrix of the form (1.13), explaining its relationship to
(1.12) and to (1.11), and giving some preliminaries for the analysis of RPCD on
the corresponding quadratic function.

2.1. Relating (1.13) to (1.12). Given ε > 0 and δ ∈ (0, 1), suppose that u ∈ Rn
satisfies

(2.1) min
i=1,2,...,n

|ui| =
√

δ

δ + ε
, max

i=1,2,...,n
|ui| = 1.

Consider the matrix Bu from (1.12). Defining U := diag(u), we have

(2.2) Aε := U−1BuU
−1 = δU−2 + (1− δ)11T ,

and note that the diagonal elements of U−2 are in the range [1, ε/δ + 1]. Thus we
can write δU−2 = δI + εD, where D is diagonal with elements in [0, 1], so in fact
Aε in (2.2) has the form (1.13).

We verify in Appendix A that the iterates generated by Algorithm 1 for a given
sequence of indices i(`, j) to (1.3) with A = Bu from (1.12), and with starting point
x̃0 and exact line search are isomorphic to the iterates generated by applying the
same algorithm with the same index sequence to (1.3) with A = Aε from (2.2), with
starting point x0 = Ux̃0. Specifically, we have xk = Ux̃k for all k ≥ 0, where {x̃k} is
the iterate sequence corresponding to (1.12) and {xk} is the sequence corresponding
to (2.2). Note that the function values coincide at each iteration, that is,

(2.3)
1

2
(x̃k)TBux̃

k =
1

2
(xk)TAεx

k, k = 0, 1, 2, . . . .

Thus we expect to see similar asymptotic behavior for the quadratic objectives
based on matrices (1.12) and (1.13), from starting points with the same distribution.

We note too that the matrix Aε from (1.13) is “sandwiched” between scalar
multiples of two matrices of the form (1.11). We have

(2.4) δI + (1− δ)11T ≤ Aε ≤ (1 + ε)
(
δ′I + (1− δ′)11T

)
,

where δ′ = (δ+ε)/(1+ε) and “≤” denotes element-wise inequality. This observation
suggests similar behavior for RPCD to that proved for the matrices (1.11) in [3].
Indeed, we observe similar behavior empirically, but we could not find a way to
exploit the relationship (2.4) in our convergence analysis. The distinctiveness of
the components of D plays a key role; the effects of D in (1.13) persist through
the epochs. The analysis techniques in [3] make strong use of the fact that the
epoch-wise iteration matrix CP defined in (1.5) is independent of P , a fact that no
longer holds for matrices (1.13).
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Figure 1. CCD, RPCD, and RCD on convex quadratic objective,
where A is defined by (1.11) with n = 100 and δ = .01.

Representative numerical results for the three versions of CD on quadratics with
Hessians of the form (1.11) are shown in Figure 1. We note here the nearly identical
linear rates of the RPCD and RCD variants, and the much slower rate of the CCD
variant. The same pattern is observed in Figure 2, which considers matrices of
the forms (1.12) and (1.13). Note in particular that the latter two matrices are
indistinguishable in their empirical behavior, further justifying our focus on the
form (1.13) in our analysis.

(a) Matrix (1.13). (b) Matrix (1.12) with u satisfying (2.1).

Figure 2. Comparison between CCD, RPCD, and RCD on dif-
ferent matrices with n = 100 and (δ, ε) = (.01, .05).

2.2. RPCD Preliminaries. We now define some notation to be used in the re-
mainder of the analysis: the matrix CP that defines the change in iterate x over

one epoch and the matrix Ā
(`)
ε that defines the value f(x`n) of the objective after

` epochs.
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Applying to (1.13) the decomposition (1.4) into triangular and diagonal matrices,
we obtain

PTAεP = (1− δ)E + PT (δI + εD)P + (1− δ)ET

= (1− δ)E + (δI + εDP ) + (1− δ)ET ,(2.5)

where

(2.6) DP := PTDP, E :=


0 0 0 . . . 0 0
1 0 0 . . . 0 0
1 1 0 . . . 0 0
...

...
...

...
...

1 1 1 . . . 1 0

 .
Following (1.5), we have for Aε that the epoch matrix is

(2.7) CP := −(1− δ) [(1− δ)E + (I + εDP )]
−1
ET .

Our interest is in the quantity

(2.8) EP1,P2,...,P`
f(x`n), ` = 1, 2, . . . ,

where f(x`n) is defined by (1.8). Adapting notation from [3], we define the matrices

Ā
(t)
ε , t = 0, 1, 2, . . . , ` as follows:

Ā(0)
ε = Aε,

Ā(1)
ε = EP`

(
(P`C

T
P`
PT` )Aε(P`CP`

PT` )
)
,

...

Ā(`)
ε = EP1,...,P`

(
(P1C

T
P1
PT1 ) . . . (P`C

T
P`
PT` )Aε(P`CP`

PT` ) . . . (P1CP1
PT1 )

)
.

We have the following recursive relationship between successive terms in the se-

quence Ā
(t)
ε , t = 0, 1, 2, . . . :

Ā(t)
ε = EP`−t+1

(P`−t+1C
T
P`−t+1

PT`−t+1Ā
(t−1)
ε P`−t+1CP`−t+1

PT`−t+1)(2.9)

= EP (PCTP P
T Ā(t−1)

ε PCPP
T ),

where we have dropped the subscript on P`−t+1 in the second equality, since the
permutation matrices for each epoch are i.i.d. Using this matrix, we can compute
(2.8) by

(2.10) EP1,P2,...,P`
f(x`n) =

1

2

(
x0
)T
Ā(t)
ε x0.

3. Epoch-Wise Convergence of Expected Function Value

In this section, we analyze the behavior of the sequence of matrices {Ā(t)
ε } that

govern the expected value of the objective function f after t epochs of RPCD.
By focusing on the operation (2.9) which tracks the change from one element of
this sequence to the next, we show that this sequence is bounded in norm by a
quantity that decreases to zero at an asymptotic rate similar to the known rate for
the fully-random variant RCD.
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We show that the matrix sequence {Ā(t)
ε } is dominated2 by another sequence of

positive definite matrices {Â(t)
ε } that can be represented as a four-term recurrence

(3.1) Â(t)
ε = η̂tI + ν̂t11T + ε̂tD + τ̂t(1r1

T + r11T ),

where r1 is a vector such that ‖r1‖ ≤ 1 (as defined in Section 1.4) and (η̂t, ν̂t, ε̂t, τ̂t)
is a quadruplet of scalar coefficients for all t = 0, 1, 2, · · · . (Note that the quantities

r1 in the final term are generally different for each t.) We set Â
(0)
ε = Ā

(0)
ε = Aε,

with

(3.2) η̂0 = δ, ν̂0 = 1− δ, ε̂0 = ε, τ̂0 = 0,

and define the sequence {Â(t)
ε } so that successive elements satisfy the same rela-

tionship as shown in (2.9) for {Ā(t)
ε }, namely

Â(t+1)
ε � EP (PCTP P

T Â(t)
ε PCPP

T ).

Our analysis consists chiefly of analyzing the convergence to zero of the sequence

of quadruplets {(η̂t, ν̂t, ε̂t, τ̂t)}t=0,1,2... corresponding to {Â(t)
ε }1,2,....

After several definitions and technical results in Section 3.1, we derive in Sec-
tion 3.2 a tractable representation of the matrix CP from (1.5) that defines the

transition between successive elements of the sequences {Ā(t)
ε } and {Â(t)

ε }. In Sec-
tion 3.3, we examine the effect of the operation of CP on each of the four terms in
the bounding sequence (3.1). In Section 3.4, we define the recurrence that relates
successive elements of the sequence {(η̂t, ν̂t, ε̂t, τ̂t)}t=0,1,2..., and examine the rate
at which this sequence converges to 0. We show that the per-epoch rate is bounded
by a scalar sequence that converges at a nearly linear rate of 1−1.4δ. (Our analysis
is conservative; the true rate, observed in experiments, is often closer to 1 − 2δ.)

In most of this section, we consider the regime for parameters n, ε, and δ defined
by (1.14). The inequality δ ≤ ε is made mostly for convenience; it implies that we
can replace δ by ε in remainder terms, and it allows wide divergence in the diagonal
elements of the matrix (1.13). (We expect that the main convergence results will
continue to apply in a regime in which 0 ≤ ε < δ, which indeed is closer to the
matrix (1.11) studied in [3], which has constant diagonals, but the remainder terms
in the analysis will need to be handled differently.) In the analysis of Section 3.4,
we make additional assumptions on n, ε, and δ.

3.1. Definitions and Technical Results. We start by defining some useful quan-
tities, drawing on [3], and proving several elementary results. While technical, these
results give an idea of the effects of applying expectations over permutations to ma-
trices that arise in the subsequent analysis.

From (1.13) and (3.3), we have

(3.3) d = D1, dav := 1T d/n, dav,2 :=
1

n
1TD21.

From the definition of D in (1.13), we have dav ∈ (0, 1) and dav,2 ∈ (0, 1). We use π
to denote the permutation of {1, 2, . . . , n} associated with the permutation matrix

2Given two symmetric matrices F and G, we say that F dominates G if F − G is positive
semidefinite.
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P , so that for any vector u ∈ Rn, we have

(3.4) PTu =


uπ(1)
uπ(2)

...
uπ(n)

 , DP = PTDP = diag(dπ(1), dπ(2), . . . , dπ(n)).

We can see immediately that

P1 = 1,(3.5a)

EP Pej =
1

n
1, for any j = 1, 2, . . . , n.(3.5b)

A useful conditional probability is as follows:

(3.6) EP |Pi1=1Pe2 =
1

n− 1
(1− ei).

This claim follows because Pe2 contains n−1 zeros and a single 1, and the 1 cannot
appear in position i (because Pe1 = ei) but may appear in any other position with
equal likelihood.

A quantity that appears frequently in the analysis is the matrix F defined by

(3.7) F :=


0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0

 ,
that is, the n×n matrix of all zeros except for 1 on the diagonal immediately above
the main diagonal. We see immediately that ‖F‖ = 1. Several identities follow:

(3.8) FT e1 = e2, Fe1 = 0, F1 = 1− en.

We also have

(3.9) EP (PFPT ) =
1

n
(11T − I).

To verify this claim, note that the diagonals of PFPT are zero for all permutation
matrices P , while the off-diagonals are 1 with equal probability. Thus the expected
value of the n(n − 1) off-diagonal elements is obtained by distributing the n − 1
nonzeros in F with equal weight among all off-diagonal elements, giving an expected
value of 1/n for each of these elements, as in (3.9).

We have the following results about quantities involving F .

Lemma 3.1.

PFPTDPe1 = 0,(3.10a)

EP (PFTPTDPe1) =
1

n− 1

[
dav1−

1

n
d

]
.(3.10b)

Proof. For (3.10a), we see that PTDPe1 is a multiple of e1, and that Fe1 = 0.
For (3.10b), we use Ei to denote the expectation with respect to index i uni-

formly distributed over {1, 2, . . . , n}, and recall that π denotes the permutation
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corresponding to P . We have

EP (PFTPTDPe1) = EP dπ(1)PFT e1 from (3.4)

= EP dπ(1)Pe2 from (3.8)

= Ei diEP |Pi1=1 Pe2

= Ei di
1

n− 1
(1− ei) from (3.6)

=
1

n− 1

[
dav1−

1

n
d

]
,

as required. �

Finally, we make frequent use of the following trivial result about the norm of
rank-1 matrices: for any vectors v, w ∈ Rn, we have

(3.11) ‖vwT ‖ = ‖v‖‖w‖.

In particular, we have from ‖1‖ = n1/2 that

(3.12) ‖1vT ‖ = n1/2‖v‖,

and in particular, using the notation of Section 1.4, we have

(3.13) ‖1r1
T ‖ ≤ n1/2.

3.2. Properties of the Epoch Matrix CP . As in [3], we define

(3.14) L̄ := −(I + (1− δ)E)−1.

We noted in [3] that

L̄ij =


−1 if i = j

(1− δ)δi−j−1 if i > j

0 if i < j,

so by using notation (3.7), we have

(3.15) L̄ = −I + FT + δR1.

We have further from a standard matrix-norm inequality together with the facts
that ‖L̄‖1 ≤ 2 and ‖L̄‖∞ ≤ 2 that

(3.16) ‖L̄‖ ≤
√
‖L̄‖1‖L̄‖∞ ≤ 2.

Moreover, from [3, Section 2.2], we have

(L̄ET )ij =

{
−δi−1 for i < j

δi−j − δi−1 for i ≥ j,

so that

(3.17) L̄ET = I − e11T + δFT − δe21T + ρ1δ
2(R1 + r11T ).

(The validity of the remainder term in this expression follows from the fact that
the coefficients of δ2, δ3, . . . , δn−1 in L̄ET all have the form R1 + r11T , so we can
absorb them all into a single term of order δ2 by summation.)

The following lemma provides a useful estimate of the epoch matrix CP .
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Lemma 3.2. Suppose that (1.14) holds. Then for CP defined by (1.5) and (2.7),
we have

(1− δ)−1CP = I − e11T + ε(−DP + FTDP )(I − e11T )(3.18)

+ δ(FT − e21T ) + ε2(ρ1r11T + ρ1R1).

Proof. Note first that for a matrix Y with ‖Y ‖ ≤ ρ1 and for ε satisfying (1.14), we
have

(3.19) (I − εY )−1 = I + εY + ε2(I − εY )−1Y 2 = I + εY + ρ1ε
2R1.

From (2.7), using definition (3.14), we have

(1− δ)−1CP = − [(I + (1− δ)E) + εDP ]
−1
ET

= [L̄−1 − εDP ]−1ET

= [I − εL̄DP ]−1(L̄ET ).

By substituting from (3.17) and (3.19) (noting that ‖L̄DP ‖ ≤ ‖L̄‖ ≤ 2 from (3.16)),
we have

(1− δ)−1CP =
[
I + εL̄DP + ρ1ε

2R1

] [
I − e11T + δFT − δe21T + δ2(ρ1R1 + ρ1r11T )

]
=
[
I − e11T + εL̄DP (I − e11T ) + δ(FT − e21T ) + ε2(ρ1R1 + ρ1r11T )

]
,

where we used δ ≤ ε from (1.14) to absorb the term δ2(ρ1R1 +ρ1r11T ). The result
follows immediately when we use (3.15) to substitute for L̄, and again use δ ≤ ε
together with ‖DP ‖ ≤ 1 and (1.17) to absorb the remainder terms. �

3.3. Single-Epoch Analysis. In this section we analyze the change in each term
in the expression (3.1) over a single epoch. We examine in turn the following terms:

• the I term: Lemma 3.3,
• the D term: Lemma 3.4,
• the 11T and (r11T + 1r1

T ) terms: Lemma 3.5.

Proofs of these technical results appear in Appendix B.

Lemma 3.3. Suppose that (1.14) holds. We have

(1− δ)−2EP (PCTPCPP
T )

=

[
I +

(
1− 2

n

)
11T

]
+ ε

[
−2

(
1 +

1

n

)
D +

3n− 2

n(n− 1)
(d1T + 1dT )− 2

n

n− 1
dav11T

]
+ δ

(
−2

n

)
I + ε2(ρ111T + ρ1r11T + ρ11r1

T + ρ1R1)

� (1 + ρ1ε
2)I + (1 + ρ1ε

2)11T + (ρ1εn
−1/2 + ρ1ε

2)(1r1
T + r11T ).
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Lemma 3.4. Suppose that (1.14) holds. We have

(1− δ)−2E (PCTP P
TDPCPP

T )

=

[
D + dav11T − 1

n
(1dT + d1T )

]
+ δ

[
− 2

n
D

]
+ ε

[
−2

(
1 +

1

n

)
D2 − dav

n− 1
(1dT + d1T )− 2dav,211T

+
2

n
ddT +

2n− 1

n(n− 1)

(
11TD2 +D211T

)]
+ ε2(ρ111T + ρ1(r11T + 1r1

T ) + ρ1R1)

� D + (2ε+ ρ1ε
2)I + (dav + ρ1ε

2)11T + (ρ1n
−1/2 + ρ1ε

2)(r11T + 1r1
T ).

Lemma 3.5. Suppose that (1.14) holds. For any v ∈ Rn, we have

(1− δ)−2EP (PCTP P
T (1vT + v1T )PCPP

T )

(3.20)

= −ε
[

1

n
(dvT + vdT )− 1T v

n(n− 1)
(d1T + 1dT ) +

1

n(n− 1)
(Dv1T + 1vTD)

]
− δ

[
1

n− 1
(1vT + v1T )− 21T v

n(n− 1)
11T

]
+ ε2n1/2‖v‖(ρ1R1 + ρ1(1r1

T + r11T ) + ρ111T )

so that

(1− δ)−2EP (PCTP P
T (1vT + v1T )PCPP

T )(3.21)

� ρ1‖v‖(εn−1/2 + ε2n)I + ρ1‖v‖(εn−3/2 + ε2n1/2)11T .

When v = 1, we have

(3.22) (1− δ)−2EP (PCTP P
T (11T )PCPP

T ) = ρ1ε
2R1 � ρ1ε2I.

The following result summarizes Lemmas 3.3, 3.4, and 3.5, using the assumption
nε ≤ 1 from (1.14) to simplify some terms.
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Theorem 3.6. Suppose that (1.14) holds. We have

(1− δ)−2EP (PCTPCPP
T )

(3.23a)

� (1 + ρ1ε
2)I + (1 + ρ1ε

2)11T + ρ1εn
−1/2(r11T + 1r1

T ),

(1− δ)−2EP (PCTP P
T11TPCPP

T )

(3.23b)

� ρ1ε2I,

(1− δ)−2E (PCTP P
TDPCPP

T )

(3.23c)

� D + (2ε+ ρ1ε
2)I + (dav + ρ1ε

2)11T + (ρ1n
−1/2 + ρ1ε

2)(r11T + 1r1
T )

(1− δ)−2EP (PCTP P
T (1r1

T + r11T )PCPP
T )

(3.23d)

� ρ1εI + ρ1εn
−1/211T .

Proof. The first result (3.23a) follows immediately from Lemma 3.3 when we note
that ε2 = n−1/2(εn−1/2)(εn) ≤ εn−1/2. The bound (3.23b) is immediate from
(3.22) in Lemma 3.5. Lemma 3.4 immediately yields (3.23c). For (3.23d), we use
εn ≤ 1 and ε2n1/2 = ε(nε)n−1/2 ≤ εn−1/2 to simplify the coefficients of I and 11T

in (3.21). �

3.4. The Four-Term Recurrence and Convergence Bound for RPCD. In

this section we discuss the sequence of n×n symmetric matrices Â
(t)
ε that dominates

the sequence Ā
(t)
ε defined in Section 2.2. Using the results of the previous subsec-

tion, together with the four-term parametrization of Â
(t)
ε defined in (3.1), we derive

a recurrence relationship for the sequence of quadruplets {(η̂t, ν̂t, ε̂t, τ̂t)}t=0,1,2,....
By finding the rate at which this sequence decreases to zero, we derive a bound on
the expected values of f after each epoch of RPCD.

We now show the main result for recurrence of the representation (3.1).

Theorem 3.7. Suppose that (1.14) holds. Consider a nonnegative sequence of
quadruplets {(η̂t, ν̂t, ε̂t, τ̂t)}t=0,1,2,... satisfying

(3.24) η̂0 = δ, ν̂0 = 1− δ, ε̂0 = ε, τ̂0 = 0,

along with the recurrence

(3.25)


η̃t+1

ν̃t+1

ε̃t+1

τ̃t+1

 = (1− δ)2M̂


η̂t
ν̂t
ε̂t
τ̂t

 ,

η̂t+1

ν̂t+1

ε̂t+1

τ̂t+1

 =


max(η̃t+1, 0)
max(ν̃t+1, 0)
max(ε̃t+1, 0)
max(τ̃t+1, 0)

 ,
where

(3.26) M̂ =


1 + ρ1ε

2 ρ1ε
2 2ε+ ρ1ε

2 ρ1ε
1 + ρ1ε

2 0 dav + ρ1ε
2 ρ1εn

−1/2

0 0 1 0
ρ1εn

−1/2 0 ρ1n
−1/2 + ρ1ε

2 0

 ,
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where each ρ1 represents a positive quantity not much greater than 1 and indepen-

dent of n, ε, and δ. Then we have for Â
(t)
ε defined by (3.1) that Â

(t)
ε � Ā(t)

ε for all
t.

Proof. By definition, we have Â
(0)
ε � Ā

(0)
ε . Supposing that Â

(t)
ε � Ā

(t)
ε for some

t ≥ 0, we have from (2.9) that

(3.27) EP (PCTP P
T Â(t)

ε PCPP
T ) � EP (PCTPP

T Ā(t)
ε PCPP

T ) = Ā(t+1)
ε .

Analogous to (3.1), we define the following matrix, parametrized by the coefficients
(η̃t+1, ν̃t+1, ε̃t+1, τ̃t+1) defined in (3.25):

(3.28) Ã(t+1)
ε = η̃t+1I + ν̃t+111T + ε̃t+1D + τ̃t+1(1r1

T + r11T ).

Since (η̂t, ν̂t, ε̂t, τ̂t) ≥ 0, we can use Theorem 3.6 to ensure that

(3.29) EP (PCTP P
T Â(t)

ε PCPP
T ) � Ã(t+1)

ε .

A little more explanation is needed here. Because the matrices I, 11T , and D (the
coefficients of η̂t, ν̂t, and ε̂t, respectively) are positive semidefinite, we can use the
upper bounds in (3.23a), (3.23b), and (3.23c) to derive the � relationship. The
coefficient of τ̂t may not be positive definite, but since τ̂t ≥ 0, we can still use
the bound (3.23d) to establish the � relationship. Moreover, we can assume that
τ̃t+1 ≥ 0, by replacing r1 by −r1 in the representation (3.28) if necessary. Thus,
from (3.25), we have

Ã(t+1)
ε − Â(t+1)

ε = min(η̃t+1, 0)I + min(ν̃t+1, 0)11T + min(ε̃t+1, 0)D � 0.

By combining this expression with (3.27) and (3.29), we obtain Ā
(t+1)
ε � Â(t+1)

ε , as
required. �

We now analyze the decay of the sequence of quadruplets (η̂t, ν̂t, ε̂t, τ̂t) generated
by this recursion. For purposes of this analysis, we assume that all quantities ρ1 that
appear in the matrix M̂ defined by (3.26) are bounded in magnitude by constant
ρ̄. From this constant, we define

(3.30) ρ̂ := 3.05 + 2.1ρ̄+ .6ρ̄2 + .01ρ̄3.

We place further restrictions on the allowable regime for values of n, ε, and δ, in
addition to those in (1.14). Specifically, we require

(3.31) ρ̂ε2 ≤ 1

2
δ, n ≥ 5.

As immediate consequences of these bounds, in combination with (1.14) and (3.30),
we have

ρ̂ε ≤ 1

2

δ

ε
≤ 1

2
,(3.32a)

ε ≤ 1

n
≤ .2⇒ δ ≤ ε ≤ .2(3.32b)

n−1/2 ≤ .5, n−3/2 ≤ .1, n−2 ≤ .04,(3.32c)

ρ̄ε2 ≤ 1

2
ρ̂ε2 ≤ 1

4
δ ≤ .05,(3.32d)

ε2 =
(nε)2

n2
≤ 1

n2
≤ .04.(3.32e)
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Other useful consequences of (1.14) and (3.31), used repeatedly below, are as follows

(1− δ)2(1 + ρ̂ε2) ≤ (1− δ)2(1 + 1
2δ) ≤ (1− 1.4δ),(3.33a)

(1− δ)2 = (1− 2δ + δ2) ≤ (1− 2δ + δ/n) ≤ (1− 1.8δ).(3.33b)

We now define two sequences that can be used to bound in norm the quadruplets
(η̂t, ν̂t, ε̂t, τ̂t). These are

η̄t := 1.5ρ̂(1− 1.4δ)ttδ,(3.34a)

ε̄t := (1− 1.8δ)tε.(3.34b)

We note immediately by combining with (3.33a) and (3.33b) that

η̄t−1 ≤
η̄t

(1− 1.4δ)
⇒ (1− δ)2η̄t−1 ≤ η̄t,(3.35a)

ε̄t−1 =
ε̄t

(1− 1.8δ)
⇒ (1− δ)2ε̄t−1 ≤ ε̄t.(3.35b)

The following lemma details how the sequence of quadruplets (η̂t, ν̂t, ε̂t, τ̂t) is
bounded in terms of the quantities in (3.35). Its proof appears in Appendix C.

Lemma 3.8. Assume that the conditions (1.14) and (3.31) hold, and let (η̂t, ν̂t, ε̂t, τ̂t)
be defined as in Theorem 3.7, and η̄t and ε̄t be defined as in (3.34). Then the fol-
lowing bounds hold for all t = 1, 2, . . . :

0 ≤ η̂t ≤ η̄t,(3.36a)

0 ≤ ε̂t ≤ ε̄t,(3.36b)

0 ≤ τ̂t ≤ .5ερ̄η̄t + .54ρ̄ε̄t(3.36c)

≤ .1ρ̄η̄t + .54ρ̄ε̄t,(3.36d)

0 ≤ ν̂t ≤ (1.1 + .01ρ̄2)η̄t + (1.1 + .1ρ̄2)ε̄t.(3.36e)

We are now ready to prove the main convergence result.

Theorem 3.9. Suppose that the RPCD version of Algorithm 1 is applied to func-
tion f defined by (1.3) with coefficient matrix satisfying (1.13). Suppose that the

quantities ρ1 in each recurrence matrix M̂ in (3.25) are all bounded in magnitude
by ρ̄, and that conditions (1.14) and (3.31) hold. Then there is a constant C such
that for all t = 1, 2, . . . , we have

EP1,P2,...,Pt
f(xtn) ≤ C(1− 1.4δ)ttε‖x0‖2.

indicating an asymptotic per-epoch convergence rate approaching 1− 1.4δ.

Proof. The proof follows from (2.10) and (3.34) when we use Lemma 3.8, the bound

‖Â(t)
ε ‖ ≤ C̄‖(η̂t, ν̂t, ε̂t, τ̂t)‖ for some C̄ > 0, and the bound

‖(η̂t, ν̂t, ε̂t, τ̂t)‖ ≤ Ĉ max(η̄t, ε̄t) ≤ Ĉ(1− 1.4δ)ttε,

for some Ĉ > 0, where we used δ ≤ ε in the last step. The final claim follows by
taking the ratio of the bound after t+ 1 and t epochs, which approaches (1− 1.4δ)
as t→∞. �
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3.5. Decrease in the First Iteration. A behavior of all CD variants that we
observe in Figures 1-2 is that the objective value decreases dramatically in the very
first iteration of the algorithm. The theorem below shows that this phenomenon
can be explained for both RCD and RPCD by using an extension of the analysis in
[3, Theorem 3.4]. (Similar reasoning also applies for CCD in most cases, but there
is no guarantee, since adversarial examples consisting of particular choices of x0 can
be constructed.) Geometrically, the phenomenon is due to the function (1.3), (1.13)
increasing rapidly along just one direction — the all-one direction 1 — and more
gently in other directions. Thus an exact line search along any coordinate search
direction will identify a point near the bottom of this multidimensional “trench.”

Our result for first-iteration decrease is as follows.

Theorem 3.10. Consider solving (1.3) with the matrix A = Aε defined in (1.13),
and ε ∈ (0, 1), using CCD, RCD, or RPCD with exact line search. Then after a
single iteration, we have

(3.37) f(x1) ≤ 1

2

∑
j 6=i

(x0j )
2(δ + εdj) +

(1− δ) (δ + ε)

2(1 + ε)

∑
j 6=i

x0j

2

,

where i = i(0, 0) is the coordinate chosen for updating in the first iteration. When
RCD or RPCD is used, we further have that

Eif(x1) ≤ δ + ε

2n

(
n− δ + ε

1 + ε

)
‖x0‖2 +

n− 2

n

(1− δ)(δ + ε)

(1 + ε)

(
1Tx0

)2
.(3.38)

Proof. Suppose that i ∈ {1, 2, . . . , n} is the component chosen for updating in the
first iteration, which is chosen uniformly at random from {1, 2, . . . , n} for RPCD
and RCD. After a single step of CD, we have

x1i = x0i −

x0i + (1− δ)
∑
j 6=i

x0j
1 + εdi

 = − 1− δ
1 + εdi

∑
j 6=i

x0j

 ;

x1j = x0j , for j 6= i.
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Thus, from (1.13), we have

f(x1) =
1

2
δ‖x1‖2 +

1

2
(1− δ)

 n∑
j=1

x1j

2

+
1

2
ε
n∑
j=1

dj(x
1
j )

2

=
1

2
δ

∑
j 6=i

(x0j )
2 +

(
1− δ

1 + εdi

)2
∑
j 6=i

x0j

2


+
1

2
(1− δ)

∑
j 6=i

x0j −
1− δ

1 + εdi

∑
j 6=i

x0j

2

+
1

2
ε

∑
j 6=i

(x0j )
2dj +

(
1− δ

1 + εdi

)2

di

∑
j 6=i

x0j

2


=
1

2
δ
∑
j 6=i

(x0j )
2 +

1

2
ε
∑
j 6=i

(x0j )
2dj(3.39)

+

(∑
j 6=i x

0
j

)2
2(1 + εdi)2

[
δ (1− δ)2 + (1− δ) (εdi + δ)

2
+ εdi (1− δ)2

]
.

Since di ∈ [0, 1], δ ∈ (0, 1), and ε ∈ (0, 1), it can be shown that

1

(1 + εdi)2
≤ 1

(1 + ε)2
,

δ + εdi
1 + εdi

≤ δ + ε

1 + ε
,

di
(1 + εdi)2

≤ 1

(1 + ε)2
.

Thus by substitution into (3.39), we obtain

f(x1) ≤ 1

2
δ
∑
j 6=i

(x0j )
2 +

1

2
ε
∑
j 6=i

(x0j )
2dj

+

(∑
j 6=i x

0
j

)2
2(1 + ε)2

[
δ(1− δ)2 + (1− δ)(ε+ δ)2 + ε (1− δ)2

]
.

Further, by noting that

δ(1− δ)2 + (1− δ)(ε+ δ)2 + ε (1− δ)2 = (1− δ)
[
(δ + ε)(1− δ) + (ε+ δ)2

]
= (1− δ) (δ + ε)(1 + ε),

the desired result (3.37) is obtained.
The result (3.38) is then obtained by noting that di ≤ 1 and that

Ei
∑
j 6=i

(
x0j
)2

=
n− 1

n
‖x0‖2,

Ei

∑
j 6=i

x0j

2

=

(
1− 2

n

)(
1Tx0

)2
+

1

n
‖x0‖2,

whose derivation can be found in the proof of [3, Theorem 3.4]. �
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We can compare f(x1) from this theorem with f(x0) obtained by substituting
into (1.13), which is

f(x0) =
1

2

n∑
i=1

(x0i )
2(δ + εdi) +

1

2
(1− δ)(1Tx0)2.

Note that the second term, which involves (1Tx0)2, decreases by a factor of approx-
imately (δ + ε) in the first iteration, whereas the first term, which involves ‖x0‖2,
does not change much from its original value, which is typically already small. For
most starting points, the decrease is dramatic.

4. Analysis for CCD and RCD

The analysis for the RCD variant of coordinate descent for (1.3), (1.13) follows
from the standard analysis [5]. The modulus of convexity µ is δ, while the maximum
coordinate-wise Lipschitz constant for the gradient Lmax is 1 + ε. The per-epoch
linear rate of expected improvement in f for RCD on Aε is thus

(4.1) ρRCD ≤
(

1− δ

n(1 + ε)

)n
≈ 1− δ + δε+O

(
δε2
)
,

yielding a complexity of O(| log ε̂|/(δ(1 − ε))) iterations for reaching an ε̂-accurate
objective. The (slightly tighter) complexity of RCD from [5, Section 4] improves
this epoch bound by approximately a factor of 2, to

(4.2) O

(
| log ε̂|1 + ε+ δ

2δ

)
iterations.

That is, the per-epoch convergence rate of a bound on ρRCD is approximately
1− 2δ/(1 + ε+ δ).

It is also shown in [5] that one can get an improved rate by non-uniform sampling
of the coordinates when the coordinate-wise Lipschitz constants are not identical.
In particular, for (1.3), (1.13), if the probability that the ith coordinate is sampled
is proportional to the value of (Aε)ii, the result in [5] improves ρRCD to

ρRCD ≤
(

1− δ

n(1 + davε)

)n
≈ 1− δ + δdavε+O

(
δd2avε

2
)
.

Since dav ∈ (0, 1), this improvement is rather insignificant, and the rate is still worse
than that of (4.2). (Whether nonuniform sampling can improve the complexity
expression (4.2) is unknown.)

For CCD, we note that the iterates have the form

x`n = C`x0,

where C = −(L + ∆)−1LT , where A = L + ∆ + LT is the triangular-diagonal
splitting of A (that is, C = CI from (1.4), (1.5)). Thus

f(x`n) =
1

2
(x0)T (C`)TAC`x0,

and the asymptotic behavior of the sequence of function values is governed by
‖C`‖2. By Gelfand’s formula [2], the asymptotic per-epoch decrease factor is thus
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approximately ρ(C)2. Proposition 3.1 of [10] yields an upper bound on the per-
epoch decrease factor. Noting that the largest eigenvalue of Aε is bounded above
by n(1− δ) + δ + ε, their bound is as follows:
(4.3)

ρCCD ≤ 1−max

{
δ

n(n(1− δ) + δ + ε)
,

δ

(n(1− δ) + δ + ε)2(2 + log n/π)2
,
δ

n2

}
,

which is approximately 1 − δ/n2 for the ranges of values of δ and ε of interest
in this paper. The implied iteration complexity guarantee is about a factor of n2

worse than that for RCD. In our computational experiments, we compare empirical
observations of CCD convergence rate with ρ(C)2 rather than with (4.3).

Note that the upper bounds for convergence rates of RCD and CCD are worst-
case guarantees. On the problem class (1.13), we show that the convergence rate of
RPCD is similar to the bound for RCD, and we see in the next section that both
bounds are quite tight in practice. The worst-case bounds on CCD are looser, in
the sense that the computational behavior is not quite as poor as these bounds
suggest. Nevertheless, comparison of the worst-case bounds correctly foreshadows
that relative behavior of the different variants on these problems, seen in Figure 2:
CCD is much slower than RCD or RPCD on this class of problems.

5. Computational Results

We report here on some experiments with variants of CD on problems of the form
(1.3), (1.13). Fixing n = 100, we tried different settings of ε and δ, and ran the three
variants CCD, RCD, and RPCD for many epochs. Results are reported in Tables 1
and 2. We obtain empirical estimates of the per-epoch asymptotic convergence rate
by geometrically averaging the rate over the last 10 epochs, tabulating these obser-
vations as ρCCD(δ, observed), ρRCD(δ, observed), and ρRPCD(δ, observed). Since we
report the difference between these quantities and 1 in the tables, larger numbers
correspond to faster rates. (The numbers in the table are reported in scientific
notation, with a(b) representing a × 10b.) As noted in Section 4, we use ρ(C)2 as
the theoretical bound on the convergence rate for CCD, while we use ρRCD from [5,
Section 4] (which corresponds to the complexity (4.2)) as the theoretical estimate
of the convergence rate for RCD. For RPCD, we used 2δ as a “benchmark” value,
corresponding to a per-epoch rate of 1 − 2δ, slightly faster than the 1 − 1.4δ rate
proved in Section 3.

Not all the settings of parameters n, ε, and δ in these tables satisfy the conditions
(1.14), (3.31) that were assumed in our analysis. We mark with an asterisk those
entries for which these conditions are not satisfied. We note that the benchmark
rate of 1 − 2δ continues to hold in regimes beyond the reach of our theory. This
accords with the observation that the matrix M̂ defined in (3.26) indeed has norm
very close to 1, so that behavior of the sequence is governed chiefly by the (1− δ)2
factor in the recurrence (3.25).

These tables confirm that the empirical performance of RCD and RPCD is quite
similar, across a wide range of parameter values, and markedly faster than CCD.
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δ 1.0000 (-03) 3.0000 (-03) 1.0000 (-02) 3.0000 (-02) 1.0000 (-01)
1− ρCCD(δ, observed) 3.4122 (-04) 3.3170 (-04) 3.3527 (-04) 6.1266 (-04) 8.1036 (-04)

1− ρ(C)2 5.9018 (-06) 1.7170 (-05) 6.0912 (-05) 1.9453 (-04) 7.5546 (-04)
1− ρRCD(δ, observed) 2.6814 (-03) 5.8265 (-03) 2.1983 (-02) 6.8824 (-02) 1.4427 (-01)
1− ρRCD(δ, predicted) 1.9940 (-03) 5.9466 (-03) 1.9419 (-02) 5.5047 (-02) 1.5364 (-01)
1− ρRPCD(δ, observed) 2.7048 (-03) 6.3637 (-03) 2.1723 (-02) 6.9230 (-02) 2.0842 (-01)

Benchmark 2δ 2.0000 (-03) 6.0000 (-03) 2.0000 (-02) 6.0000 (-02)∗ 2.0000 (-01)∗

Table 1. Comparison of CCD, RPCD, and RCD on the matrix
(1.13) with n = 100 and ε = δ.

δ 1.0000 (-03) 3.0000 (-03) 1.0000 (-02) 3.0000 (-02) 1.0000 (-01)
1− ρCCD(δ, observed) 2.2372 (-04) 3.9800 (-04) 3.3538 (-04) 2.8511 (-04) 7.9319 (-04)

1− ρ(C)2 2.7954 (-05) 5.0165 (-05) 9.7958 (-05) 2.3542 (-04) 7.8096 (-04)
1− ρRCD(δ, observed) 2.6143 (-03) 8.6962 (-03) 1.7869 (-02) 5.8402 (-02) 1.4545 (-01)
1− ρRCD(δ, predicted) 1.9763 (-03) 5.8634 (-03) 1.9019 (-02) 5.3824 (-02) 1.5364 (-01)
1− ρRPCD(δ, observed) 2.8377 (-03) 7.1350 (-03) 2.1157 (-02) 6.6712 (-02) 2.0501 (-01)

Benchmark 2δ 2.0000 (-03) 6.0000 (-03)∗ 2.0000 (-02)∗ 6.0000 (-02)∗ 2.0000 (-01)∗

Table 2. Comparison of CCD, RPCD, and RCD on the matrix
(1.13) with n = 100 and ε =

√
δ/10.
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positive definite A and nonzero diagonal F , define

(A.1) Ã = F−1AF−1.

Note that Ã is symmetric positive definite. Consider the objective functions (1.3)

defined with Hessians A and Ã. For a given x0, define x̃0 = Fx0. The function
values match at these points, that is,

(A.2) (x̃0)T Ãx̃0 = (Fx0)T Ã(Fx0) = (x0)TAx0.

Considering the iterates generated by Algorithm 1 for the two functions, with αk
defined by exact line searches, and the same choices of coordinates i(`, j) at each
iteration. Assume that Fxt = x̃t for t = 1, 2, . . . , k. Suppose that coordinate i is
chosen at iteration k, the updates are

xk+1 = xk − (Axt)i
Aii

ei, x̃k+1 = x̃k − (Ãx̃t)i

Ãii
ei.

By noting that

(Ãx̃t)i = F−1ii (Axt)i, Ãii = F−2ii Aii,

and using the inductive hypothesis, it is easy to verify that x̃k+1 = Fxk+1, as
required.

Appendix B. Proofs of Lemmas from Section 3.3

B.1. Proof of Lemma 3.3.

Proof. From Lemma 3.2, we have

(1− δ)−2PCTPCPPT

= P
[
(I − 1eT1 ) + ε(I − 1eT1 )(−DP +DPF ) + δ(F − 1eT2 ) + ε2(ρ11r1

T + ρ1R1)
](B.1a)

[
(I − e11T ) + ε(−DP + FTDP )(I − e11T ) + δ(FT − e21T ) + ε2(ρ1r11T + ρ1R1)

]
PT

=
{
P (I − 1eT1 )(I − e11T )PT

(B.1b)

+ δ
[
P (F − 1eT2 )(I − e11T )PT + P (I − 1eT1 )(FT − e21T )PT

]
+ εP (I − 1eT1 )(−2DP +DPF + FTDP )(I − e11T )PT

}
+ ε2(ρ1(1r1

T + r11T ) + ρ111T + ρ1R1).

(We give further details on the ε2 term below.) For the O(1) term in (B.1b), we
have from (3.5) and eT1 e1 = 1 that

(B.2) EP
(
P (I − 1eT1 )(I − e11T )PT

)
= I − 2

n
11T + 11T = I +

(
1− 2

n

)
11T .
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For the first part of the O(δ) term, we have from (3.5), (3.8), (3.9), and eT1 e2 = 0
that

EP
(
P (F − 1eT2 )(I − e11T )PT

)
= EP (PFPT − P1eT2 P

T )

= EP

(
PFPT − 1

(
1

n
1

)T)

=
1

n
11T − 1

n
I − 1

n
11T = − 1

n
I.(B.3)

(By symmetry, the second part of the O(δ) term will also have expectation − 1
nI.)

For the O(ε) term in (B.1b), we have from (2.6), (3.8), (3.9), Lemma 3.1, and
the fact that EP eT1DP e1 = dav that

EP
{
P (I − 1eT1 )(−2DP +DPF + FTDP )(I − e11T )PT

}
= EP

{
(P − 1eT1 )(−2PTDP + PTDPF + FTPTDP )(PT − e11T )

}
= −2D + EP (DPFPT + PFTPTD)

− EP
{
1eT1 (−2PTD + PTDPFPT ) + (−2DP + PFTPTDP )e11

T
}

+ EP (−2eT1 (PTDP )e1)11T

= −2D +
1

n
(D(11T − I) + (11T − I)D) +

2

n
(11TD +D11T )

− 1

n− 1

[
2dav11T − 1

n
11TD − 1

n
D11T

]
− 2dav11T

= −2

(
1 +

1

n

)
D +

(
3

n
+

1

n(n− 1)

)(
d1T + 1dT

)
− 2

(
1 +

1

n− 1

)
dav11T .

The lower-order terms in the main result follows by substituting this estimate along
with (B.2) and (B.3) into (B.1b).

We now address the ε2 term in (B.1b). Gathering together all terms with coef-
ficients ε2, εδ, and δ2 from (B.1a), we have

ε2P (ρ11r1
T + ρ1R1(I − e11T )PT + (transpose)

+ ε2P (I − 1eT1 )(−DP )(I − F )(I − FT )(−DP )(I − e11T )PT

+ εδP (I − 1eT1 )(−DP )(I − F )(FT − e21T )PT + (transpose)

+ δ2P (F − 1eT2 )(FT − e21T )PT .

The first term in this expression (and its transpose) is clearly accounted for by the
ε2 term in (B.1b). For the other ε2 term, and also the εδ terms, we use the facts
that ‖F‖ = 1 and ‖DP (I − F )‖ ≤ ‖DP ‖(‖I‖ + ‖F‖) = ρ1, along with δ ≤ ε, to
deduce that these terms too are accounted for by the ε2 term in (B.1b). From
‖F‖ = 1 and eT2 e2 = 1, we can say the same too for the coefficient of δ2.

For the final “�” claim in the lemma, we use the facts (1.16), d1T = ρ1n
1/2r11T

(from (3.11)), dav ∈ (0, 1], and D � 0, �

B.2. Proof of Lemma 3.4.
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Proof. From Lemma 3.2, we have

(1− δ)−2PCTPDPCPP
T

= P
[
(I − 1eT1 ) + ε(I − 1eT1 )(−DP +DPF ) + δ(F − 1eT2 ) + ε2(ρ11r1

T + ρ1R1)
]
DP

(B.4a)

[
(I − e11T ) + ε(−DP + FTDP )(I − e11T ) + δ(FT − e21T ) + ε2(ρ1r11T + ρ1R1)

]
PT

= P (I − 1eT1 )DP (I − e11T )PT

+ εP (I − 1eT1 )DP (−I + F )DP (I − e11T )PT

+ εP (I − 1eT1 )DP (−I + FT )DP (I − e11T )PT

+ δP (F − 1eT2 )DP (I − e11T )PT

+ δP (I − 1eT1 )DP (FT − e21T )PT

+ ε2(ρ111T + ρ1(r11T + 1r1
T ) + ρ1R1)

= P (I − 1eT1 )DP (I − e11T )PT
(B.4b)

+ εP (I − 1eT1 )DP (−2I + F + FT )DP (I − e11T )PT

+ δP (FDP − 1eT2DP +DPF
T −DP e21

T )PT

+ ε2(ρ111T + ρ1(r11T + 1r1
T ) + ρ1R1),

where we used (3.10a) from Lemma 3.1 along with eT2DP e1 = 0 to simplify the
coefficient of δ. (Further justification for the form of the ε2 term appears below.)

For the O(1) term, we have that

P (I − 1eT1 )DP (I − e11T )PT = (P − 1eT1 )DP (PT − e11T )

= D − 1eT1 P
TD −DPe11T + (eT1DP e1)11T .

Thus from (3.5), we have by taking expectations over P that

EP (P (I − 1eT1 )DP (I − e11T )PT ) = D − 1

n
11TD − 1

n
D11T + dav11T

= D − 1

n
(1dT + d1T ) + dav11T ,

as required.
For the coefficient of δ, we have

P (FDP − 1eT2DP +DPF
T −DP e21

T )PT

= PFPTD − 1eT2 P
TD +DPFTPT −DPe21T .

Taking expectations with respect to D, we have from (3.5) and (3.9) that

EP (PFPT )D − 1EP (eT2 P
T )D +DEP (PFTPT )−DEP (Pe2)1T

=
1

n
(11T − I)D − 1

n
11TD +

1

n
D(11T − I)− 1

n
D11T

= − 2

n
D.
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For the coefficient of ε, we have

P (I − 1eT1 )PTDP (−2I + F + FT )PTDP (I − e11T )PT

= DP (−2I + F + FT )PTD

− 1eT1 P
TDP (−2I + F + FT )PTD −DP (−2I + F + FT )PTDPe11

T

+
[
eT1 P

TDP (−2I + F + FT )PTDPe1
]
11T

= DP (−2I + F + FT )PTD

− 1eT1 P
TDP (−2I + F )PTD −DP (−2I + FT )PTDPe11

T

− 2
[
eT1 P

TD2Pe1
]
11T ,(B.5)

where we used (3.10a) in Lemma 3.1 to eliminate terms that are multiples of Fe1 =
0.

For the first term in (B.5), we have from (3.9) that

EP (DP (−2I + F + FT )PTD)

= −2D2 +DEP (PFPT )D +DEP (PFTPT )D

= −2D2 +
2

n
D(11T − I)D

= −2

(
1 +

1

n

)
D2 +

2

n
ddT .(B.6)

For the second term in (B.5), we have

− 1EP (eT1 P
TDP (−2I + F )PTD)

= 21EP (eT1 P
T )D2 − 1EP (eT1 P

TDPFPT )D

=
2

n
11TD2 − 1

n− 1
1

(
dav1

T − 1

n
1TD

)
D

=
2

n
11TD2 − dav

n− 1
1dT +

1

n(n− 1)
11TD2

=
1

n

2n− 1

n− 1
11TD2 − dav

n− 1
1dT ,(B.7)

where we used (3.10b) from Lemma 3.1 and the definition of dav in (3.3). The third
term in (B.5) is the transpose of this second term. For the final term in (B.5), we
have

(B.8) − 2EP (eT1 P
TD2Pe1)11T = −2dav,211T .

By substituting (B.6), (B.7), and (B.8) into (B.5), we obtain the required coefficient
of ε.

We return to verifying the form of the ε2 term in (B.4b). The coefficients of ε2,
εδ, and δ2 terms from (B.4a) are are follows:

ε2P (I − 1eT1 )DP (ρ1r11T + ρ1R1)PT + (transpose)

+ ε2P (I − 1eT1 )(−DP )(I − F )DP (I − FT )(−DP )(I − e11T )PT

+ εδP (I − 1eT1 )(−DP )(I − F )DP (FT − e21T )PT + (transpose)

+ δ2P (F − 1eT2 )DP (FT − e21T ).
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By making use of the bounds ‖I‖ = ‖F‖ = 1, ‖DP ‖ ≤ 1, ‖e1‖ = ‖e2‖ = 1, and
δ ≤ ε, we see that this expression is accounted for by the coefficient of ε2 in (B.4b).

For the final “�” relationship, we use ddT � nI to obtain (2/n)εddT � 2εI,
11TD2 = n1/21r1

T to bound the terms with 11TD2 (and similarly for D211T ),
D2 � 0, 1dT = n1/21r1

T to obtain −(1/n)1dT � n−1/21r1
T , and R1 � I. �

B.3. Proof of Lemma 3.5.

Proof. We have

PCTP P
T (1vT + v1T )PCPP

T = PCTP P
T1vTPCPP

T + (transpose),

where we use (transpose) to denote the transpose of the explicitly stated terms.
From Lemma 3.2 and PT1 = 1, we have

(1− δ)−2PCTP PT1vTPCPP
T

= P
[
(I − 1eT1 ) + ε(I − 1eT1 )(−DP +DPF ) + δ(F − 1eT2 ) + ε2(ρ11r1

T + ρ1R1)
]
1vTP

(B.9a)

[
(I − e11T ) + ε(−DP + FTDP )(I − e11T ) + δ(FT − e21T ) + ε2(ρ1r11T + ρ1R1)

]
PT

= P (I − 1eT1 )1vTP (I − e11T )PT
(B.9b)

− ε
{
P (I − 1eT1 )DP (I − F )1vTP (I − e11T )PT

+ P (I − 1eT1 )1vTP (I − FT )DP (I − e11T )PT
}

+ δ
{
P (F − 1eT2 )1vTP (I − e11T )PT

+ P (I − 1eT1 )1vTP (FT − e21T )PT
}

+ ε2n1/2‖v‖(ρ1R1 + ρ1(r11T + 1r1
T ) + ρ111T ).

To derive the remainder term (the coefficient of ε2 in (B.9b)), we need to consider
the coefficients of ε2, δε, and δ2 from (B.9a). The coefficient of the ε2 term is

ε2P (I − 1eT1 )1vTP (ρ1r11T + ρ1R1)PT

+ ε2P (ρ11r1
T + ρ1R1)1vTP (I − e11T )PT

+ ε2P (I − 1eT1 )(−DP +DPF )1vT (−DP + FTDP )(I − e11T )PT .(B.10)

Using (I−1eT1 )1 = 1−1 = 0, we see that the first term in this expression vanishes.
From (3.7) and (3.8), we have several other identities:

(B.11) (I − F )1 = en, (F − 1eT2 )1 = F1− 1 = −en.

In the third term, we thus have that (−DP +DPF )1 = −DP (I−F )1 = −DP en =
ρ1r1. We also have that eT1DP en = 0 and vT (−DP + FTDP ) = ρ1‖v‖r1T . Thus
(B.10) becomes

ε2P (ρ1(r1
T1)1 + ρ1R11)vT (I − Pe11T )

+ ρ1ε
2‖v‖P (I − 1eT1 )(−DP en)r1

T (I − e11T )PT

= ε2(ρ1n
1/21 + ρ1n

1/2r1)(vT − ‖v‖ρ11T )

+ ρ1ε
2‖v‖r1r1

T (I − e11T )PT

= ε2n1/2‖v‖(ρ1R1 + ρ1(1r1
T + r11T ) + ρ111T ),



Analyzing Random Permutations for Cyclic Coordinate Descent 27

which is accounted for by the ε2 term in (B.9b). We turn next to the coefficient of
εδ in (B.9a). This term consists of the following expression plus its transpose:

δεP (I − 1eT1 )(−DP )(I − F )1vTP (FT − e21T )PT

= δε(P − 1eT1 )(−DP )env
TP (FT − e21T )PT from (B.11)

= δε(PDP en)vTP (FT − e21T )PT since eT1DP en = 0

= δεr1(ρ1‖v‖r1T − ρ1‖v‖1T ).

Because δ ≤ ε, this term (plus its transpose) can also be accounted for by the ε2

term in (B.9b). For the coefficient of δ2 in (B.9a), we have, using (B.11) again,

δ2P (F − 1eT2 )1vTP (FT − e21T )PT

= −δ2PenvTP (FT − e21T )PT = δ2r1‖v‖(ρ1r1T + ρ11
T ) = δ2‖v‖(ρ1R1 + ρ1r11T ),

which can also be absorbed into the ε2 term in (B.9b).
Returning to the lower-order terms in (B.9b), we use again the fact that (I −

1eT1 )1 = 0 to eliminate the O(1) term, and also one of the two terms in the coeffi-
cients of both ε and δ. We thus obtain

(1− δ)−2PCTPPT1vTPCPP
T

= −ε
{
P (I − 1eT1 )DP (I − F )1vTP (I − e11T )PT

}
+ δ
{
P (F − 1eT2 )1vTP (I − e11T )PT

}
+ ε2n1/2‖v‖(ρ1R1 + ρ1(r11T + 1r1

T ) + ρ111T ).(B.12)

Additionally, we have from (2.6) that

P (I − e11T )PT = I − (Pe1)1T

P (I − 1eT1 )DP = P (I − 1eT1 )PTDP = (I − 1(Pe1)T )DP.

By substituting these identities into (B.12), we obtain

(1− δ)−2PCTPPT1vTPCPP
T

= −ε
{

(I − 1(Pe1)T )DPenv
T (I − (Pe1)1T )

}
− δ
{

(Pen)vT (I − (Pe1)1T )
}

+ ε2n1/2‖v‖(ρ1R1 + ρ1(1r1
T + r11T ) + ρ111T )

= −ε
{
D(Pen)vT (I − (Pe1)1T )

}
− δ
{

(Pen)vT (I − (Pe1)1T )
}

+ ε2n1/2‖v‖(ρ1R1 + ρ1(1r1
T + r11T ) + ρ111T )(B.13)

where the second equality follows from

(Pe1)TD(Pen) = eT1DP en = 0,

since DP is diagonal for all P .
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Taking expectations, we have for the coefficient of (−δ) in (B.13) that

EP
(
(Pen)vT (I − (Pe1)1T )

)
= EP (Pen)vT −

[
EP (Pen)(vTPe1)

]
1T

=
1

n
1vT − 1

n(n− 1)

 n∑
i,j=1

i6=j

viej

1T

=
1

n
1vT − 1

n(n− 1)

 n∑
i=1

vi

n∑
j=1

i6=j

ej

1T

=
1

n
1vT − 1

n(n− 1)

(
n∑
i=1

vi(1− ei)

)
1T

=
1

n
1vT − 1

n(n− 1)

(
(1T v)11T − v1T )

)
=

1

n
1vT − (1T v)

n(n− 1)
11T +

1

n(n− 1)
v1T ,(B.14)

where the second equality is from a conditional expectation over permutation ma-
trices P such that Pe1 = j and Pen = i, for all i, j = 1, 2, . . . , n with i 6= j. By
combining (B.14) with its transpose, we obtain the full coefficient of (−δ) in (3.20),
which is(

1

n
+

1

n(n− 1)

)
(1vT + v1T )− 2(1T v)

n(n− 1)
11T =

1

n− 1
(1vT + v1T )− 2(1T v)

n(n− 1)
11T .

This verifies the O(δ) term in (3.20).
We note that the coefficient of (−ε) in (B.13) is the same as the coefficient of

(−δ), except for being multiplied from the left by D, which is independent of P .
Thus the expectation of this term is simply (B.14), multiplied from the left by D,
that is,

1

n
D1vT− 1T v

n(n− 1)
(D1)1T+

1

n(n− 1)
Dv1T =

1

n
dvT− 1T v

n(n− 1)
d1T+

1

n(n− 1)
Dv1T .

We obtain the full coefficient of (−ε) in (3.20) by adding this quantity to its trans-
pose, to obtain

1

n
(dvT + vdT )− 1T v

n(n− 1)
(d1T + 1dT ) +

1

n(n− 1)
(Dv1T + 1vTD),

as required.
For the “�” result (3.21), we use

‖dvT ‖ = n1/2ρ1‖v‖, ‖d‖ ≤ n1/2, |1T v| ≤ n1/2‖v‖, ‖Dv‖ ≤ ‖d‖,

together with δ ≤ ε from (1.14). We also use r11T + 1r1
T = n1/2R1 and −I �

R1 � I for symmetric R1 to absorb the ε2(r11T + 1r1
T ) term in (3.20) into the I

term in (3.21).
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For (3.22), we have

(1− δ)−1PCTPPT1

= (1− δ)−1PCTP 1

= P
[
(I − 1eT1 ) + ε(I − 1eT1 )DP (−I + F ) + δ(F − 1eT2 ) + ε2(ρ11r1

T + ρ1R1)
]
1

= P
[
−ε(I − 1eT1 )DP en − δen + ε2n1/2(ρ11 + ρ1r1)

]
= P

[
−εDP en − δen + ε2n1/2(ρ11 + ρ1r1)

]
,

(B.15)

where we used the following identities for the third equality:

(I − 1eT1 )1 = 0, (−I + F )1 = −en, (F − 1eT2 )1 = −en,

r1
T1 ≤ n1/2, R11 = ρ1n

1/2r1,

and eT1DP en = 0 for the fourth equality. By substituting DP = PTDP into (B.15),
we obtain

(1− δ)−1PCPPT1 = −εDPen − δPen + ε2n1/2(ρ11 + ρ1r1).

By taking the outer product of this vector with itself, and using δ ≤ ε, we obtain

(1− δ)−2PCTPPT11TPCPP
T

= ε2D(Pen)(Pen)TD + δε[D(Pen)(Pen)T + (Pen)(Pen)TD] + δ2(Pen)(Pen)T

+ ε3n1/2(ρ1(1r1
T + r11T ) + ρ1R1),

where in the remainder term we used ‖Pen‖ = 1 and ‖D‖ ≤ 1. By taking expecta-
tions over P , and using EP (Pen)(Pen)T = n−1I, we obtain

(1− δ)−2EP (PCTP P
T11TPCPP

T )

= n−1ε2D2 + 2n−1εδD + n−1δ2I + ε3n1/2(ρ1(1r1
T + r11T ) + ρ1R1)

= ρ1ε
2n−1R1 + ρ1ε

3nR1 = ρ1ε
2R1,

where we used (1.14) in the last expression to deduce that ε3n ≤ ε2.
�

Appendix C. Proof of Lemma 3.8

Proof. Note first that η̂t, ν̂t, ε̂t, and τ̂t are all nonnegative by definition. In this
proof, we use repeatedly that they can be bounded by |η̃t|, |ν̃t|, |ε̃t|, and |τ̃t|, re-
spectively, though the | · | are unnecessary in the case of ε̃t (since its exact value
can be determined trivially from (3.25)) and in the case of τ̃t (which can be as-
sumed without loss of generality to be nonnegative, as mentioned in the proof of
Theorem 3.7).

The proof is by induction on t. We show first that the bounds (3.36) hold for
t = 1.

We have from (3.33b) and the obvious property ε̂t = (1− δ)2tε from (3.25) that

ε̂1 = (1− δ)2ε ≤ (1− 1.8δ)ε = ε̄1,
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verifying (3.36b) for t = 1. For (3.36a), we have from (3.25) with t = 0, using the
initial values (3.24) and the bounds in (3.32) that that

(1− δ)−2η̂1 ≤ (1− δ)−2|η̃1| ≤ (1 + ρ̄ε2)δ + ρ̄ε2(1− δ) + (2ε+ ρ̄ε2)ε

= δ + (2 + ρ̄+ ρ̄ε) ε2

≤ δ + ρ̂ε2 ≤ 3δ.

It follows from ρ̂ ≥ 3 and δ ≤ .2 (see (3.32b)) that

η̂1 ≤ 3(1− δ)2δ ≤ 3(1− 1.4δ)δ ≤ 1.5ρ̂(1− 1.4δ)δ = η̄1,

verifying (3.36a) for t = 1. For (3.36c) with t = 1, we have

τ̂1 = τ̃1 ≤ (1− δ)2ρ̄εn−1/2δ + (1− δ)2(ρ̄n−1/2 + ρ̄ε2)ε

≤ (1− 1.4δ)(.5)ρ̄εδ + (1− 1.8δ)(.5ρ̄+ .04ρ̄)ε,

where for the second inequality we used n−1/2 ≤ .5 and ε2 ≤ .04. Continuing, we
use η̄1 ≥ 4(1− 1.4δ)δ and ε̄1 = (1− 1.8δ)ε to write

(C.1) τ̂1 ≤
1

8
ρ̄εη̄1 + .54ρ̄ε̄1,

which suffices to prove (3.36c) for t = 1. For (3.36d), we simply use ε ≤ .2 from
(3.32).

For (3.36e) with t = 1, we have from (3.25) and (3.24), using again ε2 ≤ .04 from
(3.32), as well as dav ≤ 1 from (3.3) that

ν̂t ≤ |ν̃t| ≤ (1− δ)2(1 + ρ̄ε2)δ + (1− δ)2(dav + ρ̄ε2)ε

≤ (1− δ)2(1 + ρ̄ε2)δ + (1− δ)2(1 + .04ρ̄)ε

≤ (1− 1.4δ)ρ̂δ + (1− 1.8δ)(1 + .04ρ̄)ε

≤ η̄1 + (1 + .04ρ̄)ε̄1,

which suffices to demonstrate (3.36e) for t = 1.
Assuming now that (3.36) holds for some t ≥ 1, we prove that the bounds holds

for t+ 1 as well. We start with (3.36c). It follows from (3.25) that

(1− δ)−2τ̂t+1 ≤ (1− δ)−2|τ̃t+1| ≤ ρ̄εn−1/2|η̂t|+ (ρ̄n−1/2 + ρ̄ε2)|ε̂t|
≤ .5ρ̄εη̄t + (.5ρ̄+ .04ρ̄)ε̄t

≤ .5ρ̄εη̄t + .54ρ̄ε̄t.

It then follows from (3.35) that

τ̂t+1 ≤ .5ρ̄εη̄t+1 + .54ρ̄ε̄t+1,

as required. As earlier, (3.36d) follows immediately when we note that ε ≤ .2, from
(3.32).

For (3.36e), we have

(1− δ)−2ν̂t+1 ≤ (1 + ρ̄ε2)η̄t + (dav + ρ̄ε2)ε̄t + ρ̄εn−1/2|τ̂t|

≤ (1 + ρ̄ε2 + (ρ̄εn−1/2)(.1)ρ̄)η̄t + (dav + ρ̄ε2 + (ρ̄εn−1/2)(.54)ρ̄)ε̄t,

where we used (3.36d) for the second inequality. Using now the bounds ρ̄ε2 ≤ .05
and n−1/2 ≤ .5 (from (3.32)), dav ≤ 1, and εn−1/2 = (εn)n−3/2 ≤ n−3/2 ≤ .1, we
have

(1− δ)−2ν̂t+1 ≤ (1.1 + .01ρ̄2)η̄t + (1.1 + .1ρ̄2)ε̄t,
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so that
ν̂t+1 ≤ (1.1 + .01ρ̄2)η̄t+1 + (1.1 + .1ρ̄2)ε̄t+1,

as required.
The proof for (3.36b) is trivial, since

ε̂t+1 = (1− δ)2(t+1)ε = (1− δ)2ε̂t ≤ (1− 1.8δ)ε̂t ≤ (1− 1.8δ)ε̄t = ε̄t+1.

We now prove (3.36a) for t replaced by t + 1. We have, substituting from the
other formulas in (3.36), and using the bounds in (3.32), that

(1− δ)−2η̂t+1 ≤ (1 + ρ̄ε2)η̄t + ρ̄ε2ν̄t + (2ε+ ρ̄ε2)ε̄t + ρ̄ε|τ̂t|
≤ (1 + ρ̄ε2)η̄t + ρ̄ε2[(1.1 + .01ρ̄2)η̄t + (1.1 + .1ρ̄2)ε̄t]

+ (2ε+ ρ̄ε2)ε̄t + ρ̄ε[.5ερ̄η̄t + .54ρ̄ε̄t]

≤ [1 + ρ̄ε2 + ρ̄ε2(1.1 + .01ρ̄2) + .5ρ̄2ε2]η̄t

+ [ρ̄ε2(1.1 + .1ρ̄2) + 2ε+ ρ̄ε2 + .54ρ̄2ε]ε̄t

≤ [1 + ε2(ρ̄+ ρ̄(1.1 + .01ρ̄2) + .5ρ̄2)]η̄t

+ [.5ε(1.1 + .1ρ̄2) + 2ε+ .5ε+ .54ρ̄2ε]ε̄t

≤ [1 + ε2(2.1ρ̄+ .5ρ̄2 + .01ρ̄3)]η̄t + ε[.55 + .05ρ̄2 + 2.5 + .54ρ̄2]ε̄t

≤ (1 + ρ̂ε2)η̄t + ρ̂εε̄t,

where we used the definition (3.30) of ρ̂ for the final inequality. Thus from (3.33),
substituting from (3.34), and using ε2 < δ from (1.14), we have

η̂t+1 ≤ (1− δ)2(1 + ρ̂ε2)η̄t + (1− δ)2ρ̂εε̄t
≤ (1− 1.4δ)η̄t + (1− 1.8δ)ρ̂εε̄t

≤ 1.5ρ̂(1− 1.4δ)t+1tδ + (1− 1.8δ)t+1ρ̂ε2

≤ 1.5ρ̂(1− 1.4δ)t+1tδ + (1− 1.4δ)t+1ρ̂ε2

≤ (1− 1.4δ)t+1(1.5ρ̂tδ + ε2)

≤ (1− 1.4δ)t+1(1.5ρ̂tδ + δ)

≤ (1− 1.4δ)t+1(1.5)ρ̂(t+ 1)δ = η̄t+1,

as required. This completes the inductive step and hence the proof. �
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